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We study random walks on 7/d (d~> 1) containing traps subject to decay. The 
initial trap distribution is random. In the course of time, traps decay inde- 
pendently according to a given lifetime distribution. We derive a necessary 
and sufficient condition under which the walk eventually gets trapped with 
probability 1. We prove bounds and asymptotic estimates for the survival 
probability as a function of time and for the average trapping time. These are 
compared with some well-known results for nondecaying traps. 

KEY WORDS: Random walk; decaying random trap field; n-step survival 
probability; average trapping time; large deviations. 

1. I N T R O D U C T I O N  A N D  S T A T E M E N T  OF R E S U L T S  

The  fo l lowing  t r a p p i n g  p r o b l e m  has  been  s tud ied  extensively  in  the 

l i tera ture .  C o n s i d e r  the  lat t ice g a ( d >  1) a n d  o n  it a random walk (Xn)n~O 
with  s ingle-s tep  p r o b a b i l i t y  d i s t r i b u t i o n  p:  7/d--, [0, 1 ],  i.e., 

X0 = 0; Xn + 1 - Xn are i.i.d. S - v a l u e d  r a n d o m  var iab les  with 

P x ( X n + l - X n = x ) = p ( x )  ( n > ~ O , x ~ Z  a) 

Here  P x  deno tes  the  p r o b a b i l i t y  m e a s u r e  for the r a n d o m  walk  path .  We  
shal l  a s s u m e  tha t  (Xn) is aper iodic ,  m e a n i n g  tha t  there  is n o  p r o p e r  sub-  
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lattice containing 0 and the support  of p(x). Next suppose that on the 
lattice there is a random trap field (C(x))z ~ z~ with density c > 0, i.e., 

C(x) are i.i.d. {0, 1 }-valued random variables with 

Pc(C(x) = 1 ) =  1 - P c ( C ( x )  = 0 ) =  c (xe  Z d) 

Here Pc denotes the probability measure for the random trap field; 
1 corresponds to a trap, 0 to a trap-free site. The trapping time is defined 
a s  

T =  inf{n ~> 0: C(J(n) = 1 } 

and the survival function as 

f ( n ) = P ( T > n )  (n>~O) (1.1) 

with P - - P x  x Pc. The latter expresses the fact that the random walk and 
the random trap field are assumed to be independent. The problem is to 
find out how f(n) behaves as a function of n, depending on the choice of 
d, p(x), and c. In the literature interest has centered on asymptotics of 
f(n), for small and large n, and moments  of T, for small and large c. (1'2) 

In this paper we want to examine what happens when the traps are 
allowed to decay in the course of time, i.e., we want to see how this affects 
the survival function. To that end we introduce a decaying random trap 
field (Cn(x))n>~o,x~,d defined in the following manner. With each site x we 
associate a random lifetime z(x) such that 

r(x) are i.i.d. {0, 1,... }-valued random variables with 

Pc(r(x)>n)=c(n)  (n>~O,x~7/d) 

and we set 

C,(x) = 1 if n < z(x) 

Cn(x)=O if n>.z(x) 

So site x is a trap until time r(x) and decays to a trap-free site at time r(x). 
The function c(n) is the trap density function and will be assumed to be 
given. Note  that z(x) = 0 means that there is no trap at site x at time n = 0 
to begin with. We shall therefore sometimes write 

where 

c(n) = cd(n) 

c = c(O) = Pc(z(x) > O) 

d(n) = Pc(z(x) > n I z(x) > O) 
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with d(n) the intrinsic trap decay function. The trapping time now becomes 

T =  inf{n ~> 0: C,(Xn) = 1 } (1.2) 

and the survival function is again given by (1.1) with P = P x  x Pc. Now, 
of course, Pc describes the decaying random trap field. Our aim will be to 
study f(n) for various choices of d, p(x), and c(n) and to make a com- 
parison with some well-known results for the nondecaying trap situation 
[i.e., c(n)-c].  The present work is largely introductory in the sense that 
our main goal is to suggest new questions. 

Our starting point is the following formal expression for the survival 
function, which will be proved in Section 2.1. 

P r o p o s i t i o n .  

with 

f ( n ) = E x (  H E l - c ( k ) ]  R(k)) (1.3) 
O ~ k < ~ n  

R ( k ) = I ( X k r  Xl ..... Xk_l}) (k>~0) 

Here R(k) is the indicator random variable, which is 1 if the random walk 
hits a new site at time k and is 0 otherwise. The expectation is over the 
random walk only; the expectation over the decaying random trap field is 
implicit. 

Our first result gives the necessary and sufficient condition under 
which f loe )  = limn_ ~ f(n) = 0, i.e., with probability 1 the random walk 
eventually gets trapped. The proof will be given in Section 2.2. 

T h e o r e m  1. f ( c ~ ) = 0  if and only if 

c(n) ExR(n) = c~ (1.4) 
n ~ O  

This gives a complete classification because ExR(n ) can be computed via 
generating functions. Indeed (3'4) 

with 

z"ExR(n ) = [(1 - z )  G(0; z)] - - 1  (1.5) 
n~>0 

G(0; z) = (2~)- a f( _ ., -1 ~ 

fi(O) = ~ e i~ Xp(x) 
x 

dO El-O(o)J ' 

822/67/1-2-2 
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Thus, for instance, for simple random walk with p(x) = 1/2d if Ix[ = 1 and 
p(x) = 0 otherwise, (1.5) yields (3'4) 

f (2/~n) 1/2 d= 1 

E x R ( n ) ~ j n / l o g n  d = 2  (n - ,  oo) 

I, const d~> 3 

and substitution into (1.4) gives a lower bound for the decay of c(n). 
Another way of phrasing (1.5) is (ref. 5, p. 36) 

ExR(n)=Px(X~=/=O for 0 < k ~ n )  

Hence, for transient random walk (1.4) requires that Z , ~ o  c (n)=  o% i.e., 
the traps have infinite expected lifetime, while for recurrent random walk 
the restriction is apparently stronger. 

From now on we shall assume that c(n) decays as a power of n with 
an exponent that is sufficiently small to guarantee f(oo ) =  0. 

Our second result concerns the rate at which f (n)  tends to zero for 
large n in d--  1. (For d>~ 2 similar but weaker estimates may be obtained.) 
The proof will be given in Section 2.3. 

T h e o r e m  2. Suppose that d= 1, Zx  xp(x) = O, 0 < 0.2 = ~ x  xZP(x) 
<oo and c ( n ) ~ A n  ~ (n--,oo, A > 0 ,  0 < 7 < 1 / 2 ) .  Then there exist 
constants 0 < K1, K2 < oo independent of ~r, A, and 7 such that for large n 

1 27)/3 t exp { - g 2  ~ ( f f A )  2/3 n (1 

<. f (n)  <. e x p { - K l ( a A )  2/3 n (1 2~/3} (1.6) 

These bounds should be compared with what is known for nondecaying 
traps, where a classical result of Donsker and Varadhan (6) says that in 
d>~ 1, if 52x xp(x) = 0 and Z x  xixJP(x) = ~260 with 0 < 0 -2 < (30, then 

lim n a/(a+ 2) log f (n)  = --Kd(ffd2) 2/(d+2) 
n~oc) 

with 2 = - l o g ( l - c )  and K d > 0  some constant depending on d (e.g., 
K1 3 2/3 = 5~ ). It is natural to guess that a similar result will hold for decaying 
traps as well, but we are far from being able to prove this. Theorem 2 iden- 
tifies the exponent and the scaling dependence in d = 1. In Section 3 we give 
a heuristic argument suggesting that the exponent becomes 

(d -27 ) / (d+2) ,  0 < 7 < 2 / d  

1 - 7 ,  2/d--.< 7 < 1 

Remarkably this exhibits a crossover at 7 = 2/d. 
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Our third result concerns the behavior of f(n) for moderately large n 
and small c with d(n) fixed [recall c(n)= cd(n)]. This is obtained from a 
cumulant expansion of (1.3) and again parallels what is known for the non- 
decaying trap situation. (1'2) In fact, for small c one immediately sees that 
the first cumulant dominates, i.e., 

l o g f ( n ) ~ - c  ~ d(k) ExR(k) (c--+O) 
O ~ k ~ n  

which can be evaluated using (1.5). The smaller is c, the larger may n be 
taken. As c --+ 0, we may even insert the asymptotic form of ExR(k) for k 
large, since the sum diverges as n ~ oo [recall (1.4)]. This will be written 
out in Section 2.4 and leads to the following result: 

T h e o r e m  3. Suppose that 

{ ~ x p ( x ) = O  d = 1 , 2  

O < a2 = det { ~ xiSp( x ) } < oo 

L = Px(Xx :/:0 for all k >  0) d >  3 

and that c(n) = cd(n) with d(n) ~ An y (n ~ 0% A > 0, 0 < ? < 1/2 for d =  1, 
0 < 'y < 1 for d>~ 2). Then for small c and n moderately large 

-- 1--27~cAnl/2 ~ d= l 

1 n 1 7 
log f (n )  ~ -21r acA - -  d = 2  (1.7) 

1 - -  7 l o g  n 

l 
- - - L c A n  1 ~ d>~3 

From (1.7) we can locate the regime of n values where f(n) changes 
from 0(1)  to o(1) as c ~ O :  

(!)2/(1 2>.) d = l  

1 1\  1/(1 -~) 
log c )  d = 2 7 

( ! )1/ ( ,  ,) d > 3  

Our fourth and final result concerns the expected trapping time as 
c--+0. To calculate ET=Z.>~of(n), we need to estimate the higher 
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cumulants because we need to get an idea of how f ( n )  behaves in the inter- 
mediate regime between moderately large n and large n. This turns out to 
be a hard problem because the random variables R(k)  are difficult to 
manipulate. For  nondecaying traps it has been shown that the first 
cumulant is the dominating contribution to E T  in the limit as c ~ 0 in 
d~> 2. (7) This comes from the fact that for small c the approximation o f f ( n )  
by the first cumulant is quite good up to relatively large n. By the time the 
higher cumulants come into play, the function f ( n )  has already made a 
substantial drop, so that the late terms in the sum ~,>~of(n)  have a small 
contribution. It is reasonable to expect that something similar will occur 
for decaying traps as well, but we have trouble in getting the right 
estimates for the higher cumulants. Theorem 4 below is restricted to 
transient random walks, where the estimates turn out to be easier. All 
random walks in d ~> 3 are transient, as well as all those in d = 1 and 2 with 
Z x  x p ( x ) ~  O. In Section 2.5 we prove the following result. 

T h a o r e m  4. Suppose that the random walk is transient and that 
c( n ) = cd( n ) with d( n ) ,,~ An - ~ ( n ~ ~ , A > 0 ,  0 < 7 <  1). Then 

/ 1 \ /  1 \1/(1-7) 
l imc~/( l -~)ET=(1-7) '~/( t -~)F~-~_y_y)~-A-~)  (1.8) 
e ~ 0  

where L = P x ( X k  ~ 0 for all k > 0) > 0 and F is the gamma function. 

This generalizes what is known for nondecaying traps (l'2,v) 

lim cET  = L -  1 
t ' ~ 0  

2. P R O O F S  

2.1. Proof  of  Proposi t ion  

From (1.1) and (1.2) we have 

f ( n )  = P(Ck(Xk) = 0 for 0 ~< k ~< n) 

Writing this out with indicators, we get 

f ( n ) = E x E c (  l~I< 
O < ~ k ~ n  

0 n 

= E x E c  ( ~< 1-I 
{o~k-<.~ :g(k)=l} 

l(Ck(X~) = 0)) 

I(~(X~) ~<k)) 

1 (z(Xk) ~<k)) 
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where in the last equality we use the fact that traps are only allowed to 
decay: if the walk hits an old site, then this site cannot be a trap, because 
already it was not a trap at each of the previous hits, otherwise the walk 
would not have survived. If we now use that the lifetimes at the distinct 
sites {Xk: R(k) = 1 } are independent, then it follows that 

f i n ) =  E x (  [I  [ 1 -  c ( k ) ] )  
\{O~<k~<n: R ( k ) =  1 } 

which is the same as (1.3). | 

2.2. Proof of Theorem 1 

From now on we shall drop the subscript X and use P and E to 
denote probability and expectation over the random walk. Note that (1.3) 
may be rewritten as 

f (n)  = Ee u(.) 
(2.1) 

u(n) = R(k) 
O<~k<~n 

with 2 ( k ) = - l o g [ 1 - c ( k ) ] .  Since 2(k )~c (k )  as c(k )~O,  Theorem 1 
amounts to proving the following result. 

k e m m a  1. U(oo) = 0o P-a.s. if and only if EU(oc) = oo. 

ProoL Obviously U(oo)=  oo P-a.s. implies EU(oo)= o% so we must 
show the reverse. 

We start with the observation that { U(oo) = oo } is a tail event of the 
random walk, i.e., 

N>~O 

To see why, let co = (co.) and co '= (co'.) be two realizations of (X.). Then 
a little thought shows that 

I{k~>0: R(k, co)r  R(k, co')}l ~<2 I{n ~>0: co. r co;,}[ 

This may be checked by induction on n, because a change of co at co. affects 
R(k, co) at not more than two values of k ~> n. It follows that if co. = co'. for 
n >/N, then 

IV(o% c o ) -  g(o% co')] ~< 2N)ff0) 

[because 2(k) is decreasing], so either both are < oc or = oe. 
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By the Hewitt-Savage zero-one law (ref. 8, p. 62-63), ~- is trivial and 
hence 

P ( U ( ~ ) =  oo)=0 or l 

Thus, to complete the proof, it suffices to show that EU(oo)= co implies 
P(U(~)= ~)>0. 

First we show that 

Indeed, let 

Write 

EUZ(n) <<. 2(EU(n)) 2 for all n 

R(m,n)=l(Xnq~{X . . . . .  , X n - l } )  (O<~m<~n) 

(2.2) 

EU(n) = ~ Z(k) ER(O, k) 
k ~ O  

EU2(n) = ~ ~ 2(k) 2(/) ER(O, k) R(O, l) 
k ~ 0  l = 0  

~< 2 ~ ~ 2(k) 2(/) ER(O, k) R(O, l) 
k - - O  l ~ k  

Note that for every 0 ~< k ~< 1 

ER(0, k) R(O, l) <~ ER(O, k) R(k, l) 

= ER(O, k) ER(k, l) 

= ER(O, k) ER(O, l -  k) 

and 2(k)).(1)~< 2(k)2( l -k) .  Substitute to get (2.2). 
Next we show that 

P(V(n)/EV(n) > �89 >~ ~ for all n (2.3) 

Indeed, by Cauchy-Schwarz, 

�89 <. E(U(n) l(U(n) > �89 

<~ {EV2(n) P(V(n)> �89 '/~ 

which gives (2.3) via (2.2). 
Finally, we let n ~  oo in (2.3). If EU(oo)= oo, then P(U(oo)= oo)>~ 

1 0. I g:> 
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What  is nice about  Lemma 1 is that it holds for an arbitrary random 
walk. However, it should be noted that for most  random walks Lemma 1 
could also be obtained as a corollary of some known results for the range 

S(n)= ~ R(k)=I{Xo,  XI ..... Xn}[ 
O~k<~n 

Namely, for transient random walk (ref. 5, p. 38) and for recurrent random 
walk in d =  2 (9) the strong law S(n)/ES(n)~ 1 P-a.s. (n ~ oo) holds, while 
for recurrent stable law random walks in d =  1 (9'1~ S(n)/ES(n)~Z in 
distribution (n ~ oo) with Z some nondegenerate random variable. These 
results immediately yield Lemma 1 after we rewrite 

U(n )=  Y' A(m)S(m)+2(n+l)S(n) 
O<~m~n 

with A(m) = 2(m) - 2(m + 1)/> 0. 
But for recurrerit random walk in d =  1 that is not stable very little is 

known about  S(n)/ES(n). In this connection it is interesting to put forward 
the following result, the proof  of which will serve us later. 

[ . e m m a  2. S(n)/ES(n) is tight from below, i.e., for all e > 0  there 
exists 6 > 0 such that 

P(S(n)/ES(n) > 3) > 1 - ~ for all n (2.4) 

Proof. First we note that (2.3) also applies to S(n), i.e., 

P(S(n)/ES(n) >1  (2.5) 3) ~> 1 for all n 

because U(n) = 2(0) S(n) in the case of nondecaying traps. 
Next we note that for every 6 > 0 and n such that fin is integer 

S(n)~ max SJ(6n) (2.6) 
O~j<f i  -1 

where 

( j+  1) ,~n 

SJ(•n)  = 2 R ( j • n , k )  
k - j 6 n  

Now, SJ(6n) are i.i.d, and distributed like S(6n), so it follows from (2.5) 
that there exists e(6)~ 0 as 6--* 0 such that 

P( max SJ(6n)> �89 l - e ( 6 )  (2.7) 
O ~ j < 6  -I 
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Finally, we note that 

O ~ < j < 6  - 1  

and hence ES(n)<~3-1ES(fn). Combine the latter with (2.6) and (2.7) to 
get 

P(S(n) >1 �89 > 1 - e(6) 

which completes the proof of Lemma 2. | 

Incidentally, note that by (2.2) and Chebyshev, S(n)/ES(n) is also 
tight from above. 

2.3. P r o o f  o f  T h e o r e m  2 

Upper B o u n d .  Because c(n) is decreasing in n, we have from (2.1) 

f (n ) <. Ee-C(n)s(n) 

Let h(n) be a positive function of n, which is to be specified later. Then 

f(n) <~ P(S(n) <~ h(n)) + e c(,,)h(n) (2.8) 

L e m m a  3. For any h(n) with limn~ ~ h(n)= ~ ,  

P(S(n)<~h(n))<~(n+ 1)e ~2n/4h2(,) for n large (2.9) 

Proof. Let 

l(n;x)= ~ l (Xk=x)=local  time at site x up to time n 
O<~k<~n 

Since ~ x  l(n; x) = n + 1, it follows that 

n+ 1 = ~  l(n;x) l ( X k = x f o r  some O<~k<~n) 
x 

~< {sup l(n; x)} ~ l(Xk = x for some 0 ~< k ~< n) 
x 

x 

= {sup l(n; x)} S(n) 
x 

and hence 

P( S(n) <<. h(n) ) <~ P(sup l(n; x) >1 n/h(n) ) 
x 
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Now 

P(sup l(n; x) >~ n/h(n) ) 
x 

<~ ~ P(l(n; Xk) >~ n/h(n), Xk q~ {Xo ..... Xk_ ,}) 
O ~ k ~ n  

~< (n + 1) P(l(n; O) >~ n/h(n)) 

where the latter inequality follows because l(n; 0) is stochastically larger 
than l(n; x) for all x. So we have 

P( S(n ) <~ h(n ) ) <<. (n + 1) P( l(n; O) >~ n/h(n ) ) (2.10) 

Next, let (Pm)m >1 be the successive times at which the walk returns to 
the origin. Then, for n/h(n) integer, 

P(l(n; O) >~ n/h(n)) = P(P./h(.) <~ n) 

Since p,. is the sum of m i.i.d, copies of P l, it follows from the Markov 
inequality that for any ~ > 0 

P(P,/h(,) <~ n) <<. er Ee ~-P' } n/h(,) 

Moreover, we have the renewal relation (3'4) 

Ee-~Pl= ~ e - r  e ~"e(xn=o)}  
n>~l n>~O 

So far all steps in the argument are valid for an arbitrary random 
walk. Now, if d = 1, Zx  xp(x) = 0 and 0 < a 2 = Zx  xZP(x) < 0% then (3,4) 

Hence, 

y~, e-~ -1/2 (~--*0) 
n>~O 

E e - ~ P t = e  (2~2r [ i  + o(1)] 

If we now choose ~ such that r is minimal, 
= crZ/2h2(n), then we get that 

P(P./h(.) <~ n) <. e c:2n/4h2(n) for n large 

i.e., 

Combine with (2.10) to get (2.9). | 
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If, finally, we choose h(n) such that the two exponents in (2.8) and 
(2.9) become equal, i.e., h(n)= {~r2n/4c(n)} 1/3, then we end up with 

f(n ) <~ (n + 2) e {~r2nc2(n)/4 }l/3 for n large 

which proves the upper bound in (1.6) with K 1 < (1/4) 1/3. 

Lower  B o u n d .  The key is the following lemma. 

I . e m m a  4. Let D > 0  and 0 < 6 <  1/2. There exists K > 0  inde- 
pendent of a, D, and 6 such that 

P(S(k)<~Dk ~ for O<~k<~n)>~e -El~2/D2(1-2~)lnl-2~ for n large (2.11) 

ProoL The idea is to look at exit times of intervals. By the classical 
space-time scaling of random walk in d =  1 with zero mean and finite 
variance (ref. 5, p. 269) we have 

P( max IXkl ~< lo'nl/2)/> a for n large 
O<<.k<~n 

for some a > 0 independent of o-. We need a slight refinement of this 
property, in which we allow the starting point and the endpoint of the walk 
to vary over the middle half of the interval, namely 

inf px( max IXkl <~�89 m, [Xn[ <~�88 b fo rn la rge  (2.12) 
[xl<~l/4(an 1/2) O<~k<~n 

for some b > 0 independent of a (the upper index x means Xo = x). This 
follows from a classical estimate for the Brownian bridge, via the 
invariance principle (ref. 8, p. 279). 

Now let (D2(~_f 26)) l/(l -- 2a) 
b(j) = j 

and define the events 

B ( j )  = {IXb<j)l ~ �88 ~, IXkl ~ �89 ] ~ for b(j) <~ k <~ b(j + 1)} 

Since 
D 2 

b(j+ 1 ) -  b(j) ~ -~-  [b( j ) ]  2~ ( j +  + )  

it follows from (2.12) that 

P(B( j )  (~ B(i))>~b for j large (2.13) 
l<~i<j  
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Pick j(n) such that b(j(n))=n. Then for n large 

(�89 ~ B(i)) 
1-< t < J (n  ) 

~ P(IXkl ~�89 

<~ P(S(k) <~ Dk 6 for 0 ~ k ~< n) (2.14) 

This proves (2.11) because 
(7 2 

n 1 --26 
J(n)=D2(1 - 2 6 )  | 

From Lemrna 4 we continue as follows. Return to (2.1). Since 
c(n) ~ Z(n),,~ An-~ we get from (2.11 ), provided ~5 > 7, 

f K ~  1 -- 26 
log f (n)  >~ - ~DZ(~72a)  n + [ I + o ( 1 ) ] A D  

x ~ k - ' [ k  a -  ( k -  1)a] l  
O < k ~ n  .) 

- K(72 _ AD6 na 71 
~_[_D2( l_26)  n x 26 } _ . ~  (2.15) 

J 
The exponent is minimal when 

1 6=~(1+~) 

( 6K(72 ~ 1/3 

D = \ a ( l  + ~ ) j  

This proves the lower bound in (1.6) with K2 > [9(1 + 7)] 2/3 K 1/3. 

2.4. Proof of Theorem 3 

Theorem 3 amounts to nothing more than a calculation of the first 
cumulant c Y~o<,k<,n d(k) ER(k). Indeed, (1.5) gives/3'4) 

f (2(Tz/~zn) 1/2 d= 1 
(n--+ o0) 

with a and L as defined in Theorem 3. Together with d(n),,,An -~, this 
immediately gives (1.7). | 
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2.5. Proof  of  T h e o r e m  4 

We have already seen that 

lim ER(n)  = L > 0 (2.16) 
/ 7 ~ o Q  

where L > 0 by assumption of transience. Recall (2.1), 

f ( n )  = Ee v(,,) 
(2.17) 

U(n)= Z 2(k)  R (k )  
O < ~ k < ~ n  

with 2(k)  = - log[1  - c(k)]. Since c(n) = cd(n) with d(n) ~ An-7 ,  we have 
2 ( n ) ~ A c n  -~ uniformly in c, and hence from (2.16) and (2.17) 

A L  
EU(n)  ~ cn 1-~ uniformly in c (n ~ ~ )  (2.18) 

1 -  7 

Apply Jensen's inequality to (2.17) and substitute (2.18) to obtain, as c--+ 0, 

E T =  ~ f(n)>~ ~ e -uv(") 
n > ~ O  n > ~ O  

- -  CFl 1 y dn exp 1 - 7 

= (  1 "]l/(,-'/) o0 
(1--~/) 7/(1 ~ ) f  d t e  't ~/O-t) 

\ T~c / Jo 

The integral equals F (1 / (1 -7 ) )  and so we have proved the lower half of 
(1.8). 

The upper half is more subtle. Split E T  into two parts, 

with 

We shall show that 

lim 
N ~ o o  

E T  = I1(c, n) + I2(c, n) 

II(C, n ) =  2 f ( n )  
O < ~ n < ~ N c  1/(1-7) 

I2(c, n ) =  ~ f ( n )  
n > N c  - 1 / ( 1 - 7 )  

lim sup C 1/(1 - ~)I2(c, n) = 0 
c ~ 0  

lira sup lim sup c x/(l -~)Ii(c, n) <~ r.h.s. (1.8) 
N ~ o o  c ~ O  

which will complete the proof of Theorem 4. 

(2.19) 

(2.20) 
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Proof of  (2, 19). We start from the following lemma. 

Lemma 5. There exists K > 0  (depending on L) such that for any 
h(n) with lim . . . .  h(n) = oo and h(n) = o(n), 

P(S(n)<~h(n))<<.e l~n/h(,,) for n large (2.21) 

Proof. By (2.16), 

lim 1 ES(n) = L > 0 (2.22) 
n ~ o o  n 

Return to (2.5) and (2.6), which are both true for an arbitrary random 
walk. From (2.5) and (2.22) we have 

7 for n large P(S(n) ~ �88 ~ 

Now use (2.6) with 6 = 4h(n)/Ln to get 

P(S(n) <<. h(n)) <<. P ( max SJ(4h(n)/L) <<. h(n)~ 
\ 0  ~ j < Ln/4h(n) / 

= {P(S(4h(n)/L) <~ h(n))} Ln/4h(,) 

~< (7)Ln/4h(n) for n large 

which is (2.21). | 

From Lemma 5 we continue as follows. Return to (2.8). Pick h(n)= 
(Kn/c(n)) 1/2 to get 

f (n)  <~ 2e (xnc(~)~l/2 for n large 

Next substitute c(n)= cd(n) with d ( n ) ~An  -~ to obtain for c sufficiently 
small 

I2(c, n) <~ 2 foo dn e -~Kx~'~l :')1"2/2 
JNc-I / (  1 7) 

f2 = 2c 1/(1-,/) dt e -(KAt~ -~)~/2/2 

This proves (2.19) because the integral converges. | 

Proof of  (2.20). We start from the following lemma. 

k e m m a  6. 

Var U(n) 
lim [EU(n)]2 - 0 uniformly in c (2.23) 
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ProoL Just as in the proof of (2.2), we have 

Eu2(n) = y, ~(k) ~.(I) ER(k) R(t) 
O<~k,l<~n 

~< 2 ~, 2(k) 2(/) ER(k) R(l) 
O<~k<~l<~n 

~< 2 ~ 2(k) 2(I) ER(k) ER(1 - k) 
O<~k<~l<~n 

Substitute (2.16) and it easily follows that EUZ(n) ~ [EU(n)] 2 uniformly 
inc. | 

From Lemma 6 we continue as follows. First note that by (2.18) we 
have for c sufficiently small independently of N 

AL 
EU(n)<<,21_TN 1-7 for O<<n<~Nc-1/(~ 7) (2.24) 

This bound is independent of c. Now we claim that for every fixed N there 
exists eN(C)~ 0 as c--* 0 such that 

1 
E(e -(U(") Eu(~)))<~e~N(c)~u(n) for log-<~n<~Nc -~/(1 ~) (2.25) 

c 

[instead of log(l/c) pick any function tending to ~ as c ~ 0]. Indeed, the 
trivial bound 0 ~< R(k) ~< 1 together with (2.16) and (2.17) implies that there 
exists K > 0  (depending on L) such that 

I U ( n ) -  EU(n)I <~ KEU(n) for all n and c 

[pick K =  max{ 1, L - 1 -  1 } because ER(n) is decreasing in n]. Hence 

E IU(n) - EU(n)[ k <~ [KEU(n)] k-2 Var U(n) 

= [KEU(n)] k 6,,(c) (k >~ 2) 

for some 6.(c) ~ 0 as n ~ ~ uniformly in c because of (2.23). The latter 
immediately gives (2.25) via (2.24). Now proceed from (2.25) by estimating 

1 
II(C, n) -- log - ~< ~ e-(1 -,~(c))eu(,) 

C log(1/c)<~n<~Nc I/(1 7) 

~Nc 
-l/(l-~) 

~" "qog (1 / e )  d F / w  ~ (1 eN(c))ALcn 1 7/(1 7) 

= 7 ,  

\ A L c }  (1 _ T)7/(1 7) 

X f ALN1 7/(1 --7) dt t 7/(1-7)e (1 --SN(C))t 

aALc[log(1/c)]t - 7 / ( 1  --  7) 

Let first c ---) 0 and then N--* ~ to recover (2.20). | 
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3. H E U R I S T I C  A R G U M E N T  FOR d~>2 

In this section we give a heuristic argument in favor of the exponent 
in higher dimension conjectured below Theorem 2. This parallels a similar 
argument for nondecaying traps (ref. 2, p. 381). 

The main idea is to do a large-deviation estimate as follows. The 
probability that the random walk survives trapping during n steps, given 
that its range is (S(m))~= 0 over the time interval 0~< m ~< n, equals 

O <~ rn <~ n 

with A(m) = 2 ( m ) -  2(rn + I). Since this probability is large when 
(S(m))~,=o is small, we expect that the dominant contribution to survival 
comes from walks for which S(m) grows slower than is typical (which is 
order m/logm in d = 2  and m in d~>3). We therefore pick S(m)~Bm ~ 
(B > 0, 0 < 6 < 1), where B and 6 are parameters that may be varied. 

We now want to estimate the probability that the random walk 
realizes S(m)~ Bm ~ for 0 ~< m ~< n. In order to do so, it must return to old 
sites many times [since S(m + 1)= S(m) for most 0 ~< m < n when 3 < 1 ], 
and therefore we expect it to curl up and roughly fill a sphere of radius 
ES(m)] 1/a up to time m (we ignore numerical factors). In addition, at 
time m we expect it to be located in this sphere roughly according to a 
Gaussian with variance IS(m)] 2/d. This allows us now to estimate the 
probability that at time m + 1 the walker does not exit the sphere [i.e., 
S(m + 1) = S(m)], namely 

exp{-C[S(m)]  -z/a} ( C > 0 )  

Indeed, IS(m)] 2/d is the average time needed to exit the sphere starting 
from somewhere in the middle. Thus, the probability of realizing the given 
(S(m))~ = o equals 

e x p { _ C o  ~m<~ iS(m)] 2/a} (3.2) 

where we estimate that the events S(m+ 1)=S(m)  for successive m are 
roughly independent and that the events S(m + 1 ) r S(m) have a negligible 
contribution. 

By combining (3.1) and (3.2), substituting 2(n + 1) ~ c(n + 1 ) ,~ An-7, 
d (m)~?Am ~-1, and S(m)~Bm ~, we find for large n 

l o g f ( n ) ~ s u p {  6 ABn~ 7_ C 1-2~/d} (3.3) 
~. ~ - 6 -----~ (1 - 26/d) B 2/d n 

The exponent is maximal when 6 - ? = 1 - 26/d, i.e., 6 = d(1 + 7)/(d+ 2), 
which yields the conjectured exponent ( d -  27)/(d+ 2). 
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The argument breaks down when 6 = d(1 + 7)/(d+ 2 ) >  1 because S(n) 
can never exceed n. This explains the conjectured crossover at 7 = 2/d. The 
supremum is then attained at 6 = 1, and the exponent is 1 - 7 .  

The above argument is heuristic because it relies on the assumption 
that the dominant contribution is the one described. At best the argument 
can be turned into a rigorous lower bound for f(n). 

4. D ISCUSSION 

Theorem 1 is a nice result because it is completely general. Perhaps the 
condition (1.4) is somewhat surprising, because it is not true in general that 
l og f (n )  ~ -~2~=0 c(k) ExR(k) as n ~ oo [-first cumulant of (1.3)]. This 
can be seen, for instance, by comparing Theorems 2 and 3. Rather, the first 
cumulant is the moderately large-n approximation (see the remark prior to 
Theorem 3 ). 

Theorem 2 obviously calls for more. How to narrow down the 
constants? How to patch up the heuristic argument of Section 3 and prove 
the conjectured exponent for d~> 2? Another interesting question is what 
happens in d = 1 at the critical value 7 = 1/2 [by Theorem 1, if 7 > 1/2, then 
f (oo)  > 0 ] .  Does f(n) decay as a power of n? 

Theorems 3 and 4 are fairly general. What is the analogue of 
Theorem 4 in d = 1 and 2? What happens at the critical value 7 = 1 in the 
transient case? 

There are some potentially interesting applications of our model. For  
instance, the walk may represent the diffusive motion of a particle of some 
chemical substance, and the decaying traps some chemical reactant that 
either disappears spontaneously according to some intrinsic mechanism or 
is destroyed by some outside agency (e.g., annealing, diffusive bleaching, 
radiation). A less obvious--but  more amusing--application is to human 
lifetime statistics. View life as a "random walk" in a "decision space," with 
months or years corresponding to one unit time step. View the various 
potentially fatal diseases (e.g., pneumonia, cancer, AIDS) as "traps." Medi- 
cal advances are progressively effecting cures for many formerly deadly 
illnesses. Thus, a human being will be exposed during the aging process to 
a decreasing number of diseases, with a consequent increase in survival. In 
the medical literature attempts have been made to describe the observed 
steady increase in life expectancy via a model of the type discussed here. (it) 
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